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Hash Tables

• Direct‐address tables

• Hash tables

• Hash functions

• Open addressing



Introduction

• Many applications require a dynamic set that supports only 
the dictionary operations INSERT, SEARCH, and DELETE.

• A hash table is effective for implementing a dictionary.

• The expected time to search for an element in a hash table is 
O(1), under some reasonable assumptions.

• Worst‐case search time is O(n), however.

• A hash table is a generalization of an ordinary array.

• With an ordinary array, we store the element whose key is k 
in position k of the array.

• Given a key k, we find the element whose key is k by just 
looking in the kth position of the array. This is called direct 
addressing.



Introduction

• We use a hash table when we do not want to (or can’t) 
allocate an array with one position per possible key.

• Use a hash table when the number of keys actually 
stored is small relative to the number of possible keys.

• A hash table is an array, but it typically uses a size 
proportional to the number of keys to be stored (rather 
than the number of possible keys).

• Given a key k, don’t just use k as the index into the 
array. Instead, compute a function of k, and use that 
value to index into the array. We call this function a 
hash function.



Introduction

• Issues that we’ll explore in hash tables:

• How to compute hash functions?

– The multiplication methods.

– The division methods.

• What to do when the hash function maps multiple 
keys to the same table entry? ( collision)

– Chaining.

– Open addressing.



Direct‐address tables

• Maintain a dynamic set.

• Each element has a key drawn from a universe U 
= {0, 1,…, m -1} where m isn’t too large.

• No two elements have the same key.

• Represent by direct‐address table, or array, 
T[0..m-1]:
– Each slot, or position, corresponds to a key in U.

– If there is  an element x with key k, then T [k] contains 
a pointer to x.

– Otherwise, T [k] is empty, represented by NIL.



• Dictionary operations are trivial and take O(1) time each:
DIRECT‐ADDRESS‐SEARCH(T, k)

return T[k]
DIRECT‐ADDRESS‐INSERT(T, x)

T[key[x]] x
DIRECT‐ADDRESS‐DELETE(T, x)

T[key[x]]  NIL



Problem:

– If the universe U is large, storing a table of size |U| may 
be impractical or impossible.

– The set K of keys actually stored is small, compared to 
U, so that most of the space allocated for T is wasted.

Solution: Hash tables

– When K is much smaller than U, a hash table requires 
much less space than a direct‐address table.

– Storage requirements can be reduced to ᶱ(|K|).

– Searching for an element requires O(1) time, but in the 
average case, not the worst case.



Hash Tables
• Idea: Instead of storing an element with key k 

in slot k, use a function h and store the 
element in slot h(k).

• We call h a hash function.

• h : U {0, 1, . . . , m − 1}, so that h(k) is a legal 
slot number in T.

• We say that k hashes to slot h(k).

• We also say that h(k) is the hash value of key 
k.



Hash Tables



Collisions: When two or more keys hash to the 
same slot.

– Can happen when there are more possible keys 
than slots (|U| > m).

Methods to resolve the collision problem.

• Chaining

• Open addressing

• Chaining is usually better than open 
addressing.



Collision resolution by chaining

• Put all elements that hash to the same slot 
into a linked list.

• Slot j contains a pointer to the head of the list 
of all stored elements that hash to j.

• If there are no such elements, slot j contains 
NIL.



Dictionary Operations
How to implement dictionary operations with chaining:

CHAINED‐HASH‐INSERT(T,x):
Insert x at the head of list T[h(key[x])]

• Worst‐case running time is O(1).
• Assumes that the element being inserted isn’t already in the list.
• It would take an additional search to check if it was already 

inserted.
CHAINED‐HASH‐SEARCH(T,k):

Search for an element with key k in list T[h(k)]
• Running time is proportional to the length of the list of elements in 

slot h(k).



Dictionary Operations….

CHAINED‐HASH‐DELETE(T,x):

Delete x from the list T[h(key[x])]

• Given pointer x to the element to delete, so no 
search is needed to find this element.

• Worst‐case running time is O(1) time if the lists 
are doubly linked.

• If the lists are singly linked, then deletion takes 
as long as searching, because we must find x’s 
predecessor in its list.



Analysis of hashing with chaining

Given a key, how long does it take to find an element with that key?

Analysis is in terms of the load factor α = n / m:
– n = # of elements in the table.
– m = # of slots in the table = # of (possibly empty) linked lists.
– Load factor is average number of elements per linked list.
– Can have α < 1, α = 1, or α > 1.

• Worst case is when all n keys hash to the same slot
• get a single list of length n
• worst‐case time to search is ᶱ(n), plus time to compute hash 

function.
• Average case depends on how well the hash function distributes 

the keys among the slots.`



Average‐case performance

• Assume simple uniform hashing: any given element is equally
• likely to hash into any of the m slots.
• For j = 0, 1, …, m−1, denote the length of the list T[j] by nj, so
• that n = n0 + n1 + ... + nm−1.
• Average value of nj is E[nj] = = n/m.
• Assume that the hash value h(k) can be computed in O(1) time.
• Time for the element with key k depends on the length nh(k)
• of the list T[h(k)].
• We consider two cases:

– contains no element with key k unsuccessful.
– contain an element with key k          successful.



Average‐case performance

• Assume simple uniform hashing: any given element is equally likely 
to hash into any of the m slots.

• For j = 0, 1, …, m−1, denote the length of the list T[j] by nj, so
• that n = n0 + n1 + ... + nm−1.
• Average value of nj is E[nj] = α = n/m.
• Assume that the hash value h(k) can be computed in O(1) time.

• Time for the element with key k depends on the length nh(k) of the 
list T[h(k)].

• We consider two cases:
– contains no element with key k unsuccessful.
– contain an element with key k successful.



Theorem 11.1

• An unsuccessful search takes expected timeᶱ (1+ α).

Proof:
• Under the assumption of simple uniform hashing, any key not 

already in the table is equally likely to hash to any of the m slots.
• To search unsuccessfully for any key k, need to search to the end of 

the list T[h(k)].
• This list has expected length E[nh(k)] = α.
• Therefore, the expected number of elements examined in an 

unsuccessful search is .
• Adding in the time to compute the hash function.
• The total time required isᶱ (1 +α ).



Theorem 11.2
• An successful search takes expected time ᶱ (1+ α).

Proof:

• Assume the element being searched for is equally 
likely to be any of the n elements in the table T.

• During a successful search for x, the # of elements 
examined = # of elements in the list before x + 1.

• The expected length of that list is (n − i)/m.

• The expected # of elements examined in a successful 
search is

• The total time is ᶱ(2 + α /2 − α /2n) = ᶱ (1+ α).


